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Abstract. We study the approximation properties of a harmonic function

u ∈ H1−k(Ω), k > 0, on a relatively compact subset A of Ω, using the Gen-
eralized Finite Element Method (GFEM). If Ω = O, for a smooth, bounded

domain O, we obtain that the GFEM–approximation uS ∈ S of u satisfies

‖u−uS‖H1(A) ≤ Chγ‖u‖H1−k(O), where h is the typical size of the “elements”

defining the GFEM–space S and γ ≥ 0 is such that the local approximation

spaces contain all polynomials of degree k + γ. The main technical ingredi-
ent is an extension of the classical super-approximation results of Nitsche and

Schatz [20, 21]. In addition to the usual “energy” Sobolev spaces H1(O), we

need also the duals of the Sobolev spaces Hm(O), m ∈ Z+.
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Introduction

Let us consider the Neumann problem

(1)

{
∆u = 0 on O,

∂νu = g ∈ Hr−3/2(∂O) on ∂O,

where O is a smooth, bounded open subset of Rn, ∂O is the boundary of O, and ∂ν

is the directional derivative in the direction of the outer unit normal ν to ∂O. In
this paper, we are interested mainly in the case r ≤ 1, r ∈ Z, and we are looking
for the approximation properties of the solution u ∈ Hr(O) on suitable subsets of
O.
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2 I BABUŠKA AND V. NISTOR

For v ∈ Hr(O), r ∈ R, r > 3/2, the boundary values (or traces) v|∂O and
∂νv|∂O are defined classically, because the restriction to the boundary extends by
continuity to maps Hr(O) 3 v → v|∂O ∈ Hr−1/2(∂O) and Hr(O) 3 v → ∂νv|∂O ∈
Hr−3/2(∂O), see [11, 31] for example. For r ≤ 3/2, this is no longer true in general,
but for v = u, we can take advantage of the fact that u satisfies an elliptic equation,
so it is still possible to define ∂νu ∈ Hr−3/2(∂O) [15] (see also [18, 28]). We can
assume, without loss of generality, that O is connected, that is, that O is a domain.

It is then known [15, 26, 28] that a solution u of Equation (1) exists for any g
such that 〈g, 1〉∂O = 0 and that this solution satisfies

(2) ‖u‖Hr(O) ≤ C‖g‖Hr−3/2(∂O),

with a constant C that may depend on r, but is independent of g. (Here 〈g, 1〉∂O is
the value of the distribution g on the function constant equal to 1, thus 〈g, 1〉∂O =∫

∂O g(x)dS(x) if g is a function.) In particular, to solve the boundary value problem
(1), it is enough to do that for gn ∈ C∞(∂O), gn → g ∈ Hr−3/2(∂O). The estimate
of Equation (2) will be discussed in detail in [6], where more references will be given.
In that paper, the case ∆u 6= 0 will also be considered. In this paper, however, we
avoid all together the issue of defining the traces u|∂O by introducing in Section 4
a variational formulation of the boundary value problem (1). This also leads to a
quick derivation of Equation (2). See also [18].

The consideration of the case when g ∈ Hr−3/2(O), r ≤ 3/2, when g is a
distribution rather than a function, is important in order to be able to handle the
case of “concentrated moments” and “concentrated loads,” see for example [27].
The concentrated loads and moments are distributions concentrated at one point,
so they are obtained by taking derivatives of δ-distributions. See Example 1.4 and
below for the definition of the delta distributions and of their derivatives. Most
of our results work without any reference to boundary conditions. However, the
definition of the numerical (or discrete solution) is more difficult for the Dirichlet
problem, so we do not address this problem explicitly in this paper.

Let Ω ⊂ Rn denote a bounded, connected, open subset of Rn (i.e., Ω will be a
bounded domain). We do not assume that Ω is smooth, unless explicitly mentioned
(if Ω is assumed to be smooth, then we shall use the notation O instead of Ω).
Recall that A b B means that A is bounded, is contained in the interior of B and
∂A and ∂B are disjoint (i.e., A is a relatively compact subset of B). If A b Ω is an
open subset, then the solution u of Equation (1) will be smooth on A for any r and

(3) ‖u‖Hm(A) ≤ C‖u‖Hr(Ω),

with a constant C that depends on A, Ω, r, and m, but is independent of u satis-
fying ∆u = 0. An important problem, with potential practical applications, is to
approximate on A the solution u of Equation (1).

In this paper, we prove several results on the approximation of the solution u on
subsets A b O using the Generalized Finite Element Method. Let Sν ⊂ Hm(O),
m ≥ k + 1, be a sequence of Generalized Finite Element Spaces associated to a
sequence Σν = {ων

j , φ
ν
j ,Ψ

ν
j , ω

∗ν
j }Nν

j=1, ν ∈ Z+, of GFEM–data with typical size hν

satisfying the assumptions of Subsection 2.3 (so, in particular, hν → 0). Then
Theorem 5.8 gives that the sequence of GFEM–approximations uν := uSν

∈ Sν of
the solution u of the boundary value problem (1) satisfies

(4) ‖u− uν‖H1(A) ≤ Chγ
ν‖u‖H1−k(O),
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provided that our local approximation spaces contain all polynomials of degree
k + γ, γ ≥ 0.

The idea of considering partitions of unity and of the Generalized Finite Element
Method was introduced by Babuška, Caloz, and Osborn [3]. It was further devel-
oped in [2, 5, 16], and [4]. The Generalized Finite Element Method is used today
in Engineering under various names, such as: the method of “clouds,” the method
of “finite spheres,” the “X–finite element method,” and others. The Generalized
Finite Element Method is a generalization of the mesh free (meshless) methods
which use as a paradigm the idea of partition of unity introduced in [3, 5, 14] and
[16]. See [2] and [14] for further references.

We stress that our results require not just the energy Sobolev space H1, but also
negative order Sobolev spaces H−l, defined in this paper as the duals of H l, l ∈ Z+.
One of the main reasons for the need to consider the negative order Sobolev spaces
is that the solution u is in H1−k(Ω), and not in H1−k(Ω), in general. Moreover,
even if we approximate the boundary data g and the solution u with functions in
H1, then it will still be important to use the norm on a negative order Sobolev
space in the estimate of the error.

Here is now a brief description of the contents of the paper. We continue to
assume that Ω is a bounded domain, but we do not assume that Ω is smooth, except
when explicitly mentioned. A domain that is assumed to be smooth will be usually
denoted by O. In Section 1, we set up the notation and we establish our conventions
on Sobolev spaces. Section 2 contains a quick review of the necessary definitions
involving the Generalized Finite Element Method (GFEM). Our main results are
statements on a sequence Sν of GFEM–spaces satisfying the assumptions of Sub-
section 2.3. Our assumptions are formulated in terms of four general conditions
(Conditions A(h), B, C, and D), formulated in Subsection 2.2. The spaces Sν will
contain the sequence uν ∈ Sν of approximations of the solution u to our bound-
ary value problem (Equation (1)). The following section, Section 3, contains the
calculations necessary to establish our interior estimates for the sequence uν ∈ Sν ,
ν ∈ Z+. Our approach follows, to a certain extend, that in the article of Nitsche
and Schatz [21], relying also on Wahlbin’s survey article [33]. The main differences
between the approach in Section 3 of our paper and the approach in [21, 33] to inte-
rior estimates are due mostly to the fact that several assumptions from those papers
are not fully satisfied in our approach. As in those articles, the main step is a super-
approximation property, Proposition 3.7. The proof in [21, 33] cannot be used to
obtain Proposition 3.7 because the property “∂αw = 0 if |α| is large,” is not satisfied
in general for w ∈ Sν . For the results of Sections 4 and 5, we assume that Ω = O is
smooth. In Section 4, we introduce a weak formulation of the Neumann problem (1)
and the Galerkin approximation (or GFEM–approximation) uS ∈ S of the solution
u. This is based on an extension B̃ of the form B(w, v) :=

∫
O∇u(x) · ∇v(x)dx

to the case when v ∈ Hk−1(O) is arbitrary and u ∈ H1−k(O) can be written as
u = u1 + u2, where ∆u1 = 0 in distribution sense and u2 ∈ H1(O). We also es-
tablish a well posedness result for (1) by establishing that the extension B̃ satisfies
the Babuška–Brezzi condition. In Section 5 we exploit the definition and properties
of the Galerkin approximations uν := uSν ∈ Sν and of the form B̃. Several esti-
mates for u ∈ H1−k(O) and its approximations uν are established in this section,
including the main theorem, Theorem 5.8 (whose main conclusion was summarized
in Equation (4) above). The last section, Section 6 contains, in particular, a proof
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that, for a domain Ω with piecewise C1-boundary, we can construct a family of
partitions of unity Sν with typical size of supports hν → 0 that satisfies the as-
sumptions of our main results (i.e., the assumptions of Subsection 2.3) for a fixed
choice of the structural constants (i.e., of A, Cj , σ, κ, λ, and m). For this con-
struction, we assume that the local approximation spaces are Ψj = Qλ, the space
of polynomials of degree at most λ. By contrast, it is not possible to find a family
of partitions of unity as above for domains with cusps, see Remark 6.7. For suitable
g ∈ H−1/2−k(∂O), we plan to perform some concrete numerical simulations in a
future paper [7], where we shall also give more examples of domains and partitions
of unity satisfying he Assumption (iv) of Subsection 2.3.

We shall write x := y if x is defined by y. By Ĉ we shall denote a constant
that may depend only on the dimension n (O ⊂ Rn). By A, Cj , σ, κ, λ, and
m, we shall denote the so called “structural constants” introduced in Conditions
A–D (Subsection 2.2). The structural constants will remain fixed throughout our
discussion. By contrast, C will denote a generic constant that may depend only
on the structural constants (and, occasionally, on subsets A,A′, . . . ⊂ Ω, when
explicitly mentioned).

The second named author thanks G. Grubb, A. Schatz, and L. Wahlbin for
some useful references. A. Schatz has also made some useful comments on an
earlier version of the manuscript, for which we are grateful.

1. Preliminaries

We begin by fixing the notation and terminology. We denote by R the set of
real numbers and by C := {a + bı, a, b ∈ R} the set of complex numbers. Also,
N = {1, 2, . . .} and Z+ = {0} ∪N. By L2(Ω) we shall denote the space of bounded,
measurable functions f : Ω → C with norm ‖f‖2

L2(Ω) :=
∫
Ω
|f(x)|2dx. (As usual,

we identify two functions that coincide outside a set of Lebesgue measure zero.)
We shall use the multi-index notation for partial derivatives. Namely, α =

(α1, . . . , αn) ∈ Zn
+ will denote a multi-index and ∂αu := ∂α1

1 ∂α2
2 . . . ∂αn

n u, as usual.
Also, |α| := α1 + α2 + . . .+ αn, is the order of the partial derivative ∂α.

From now on we shall assume that Ω is a domain, that is, an open, connected
subset of Rn.

1.1. Sobolev spaces. We now introduce the integral Sobolev spaces on Ω. This
is enough for our purposes. Let s ∈ Z+. Then Hs(Ω) is the space of functions
f ∈ L2(Ω) such that

(5) ‖f‖2
s =

∑
|α|≤s

‖∂αf‖2
L2(Ω) <∞.

The space Hs
0(Ω) is defined as the closure of C∞c (Ω) in Hs(Ω).

We define the negative order Sobolev spaces by duality. Namely, H−s(Ω) :=
Hs(Ω)∗, the dual of Hs(Ω), s ∈ N. We shall denote by 〈w, φ〉 = w(φ) the value
of the linear functional w ∈ H−s(Ω) on φ ∈ Hs(Ω). Then the norm on H−s(Ω) is
given by

‖w‖H−s(Ω) = sup
φ

|〈w, φ〉|
‖φ‖Hs(Ω)

, 0 6= φ ∈ Hs(Ω).

Our definition of negative order Sobolev spaces by duality follows [10, 22, 25],
for example. Note, however, that the negative order Sobolev spaces are often
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also defined by restriction from Rn, as in [11, 15, 31], for example. The space
of restrictions to Ω of distributions in H−s(Rn) is the dual of Hs

0(Ω), and will be
denoted H−s

0 (Ω). The spaces H−s
0 (Ω) = Hs

0(Ω)∗, s ≥ 0, will also be used below.
When Ω = Rn, these two approaches yield the same spaces, but for general Ω they
may lead to different “negative order” Sobolev spaces. The spaces Hs(Rn), s ∈ R,
can also be defined using the Fourier transform.

1.2. Distributions. Since C∞c (Ω) ⊂ Hs(Ω) for any s ∈ Z+, we obtain that every
w ∈ H−s(Ω), s ∈ Z+, defines a distribution on Ω. For s < 0, the spaces Hs(Ω)
consist, in general, of distributions and not of functions. We shall not use any
nontrivial results on distributions, but we shall use the terminology related to dis-
tributions, so we now review a few needed definitions. Let BR(0) denote the open
ball of radius R centered at the origin. Also, let C∞c (Rn) be the set of infinitely
differentiable, complex valued functions that vanish outside a ball BR(0), for some
large R > 0. The elements of this space are sometimes called test functions. A
linear map u : C∞c (Rn) → C is called a distribution on Rn [12, 13, 31] if, for any
R > 0, there exists m ∈ Z+ and C > 0 such that

(6) |u(φ)| ≤ C
∑
|α|≤m

‖∂αφ‖L2 , if φ ∈ C∞c (Rn) and φ = 0 outside BR(0).

This definition does not exclude the case when larger and larger values of m and C
have to be chosen as R → ∞, and in fact this situation actually occurs in specific
examples. The set of distributions on Rn will be denoted D′(Rn).

We now fix more notation and terminology. If f is a function, then the closure of
the set {f 6= 0} is called the support of f and will be denoted supp(f). Therefore,
any φ ∈ C∞c (Ω) has compact support. We shall also write 〈u, φ〉 := u(φ) for the value
of the distribution u on the function φ ∈ C∞c (Rn). The support of a distribution u
is the smallest closed set F such that 〈u, φ〉 = 0 for any φ ∈ C∞c (Rn r F ).

Here are some examples of distributions and constructions based on distributions
that are useful below.

Example 1.1. If f is a measurable function on Rn that is integrable on any closed
ball in Rn (i.e., it is locally integrable, or f ∈ L1

loc(Rn)), then we can define

(7) 〈f, φ〉 :=
∫

Rn

f(x)φ(x)dx,

for any φ ∈ C∞c (Rn). Thus any f ∈ L1
loc(Rn) defines a distribution on Rn, that is,

L1
loc(Rn) ⊂ D′(Rn).

The derivatives of distributions are defined by duality.

Example 1.2. The derivatives ∂αu of a distribution u are defined by

〈∂αu, φ〉 := (−1)|α|〈u, ∂αφ〉.

1.3. Sobolev spaces on the boundary. We shall also need the definition of
the spaces Hm+1/2(∂O) for O a smooth, bounded domain and m ∈ Z+. Then
Hm+1/2(∂O) consists of the restrictions to ∂O of the functions in Hm+1(O) with
norm

(8) ‖v‖Hm+1/2(∂O) = ‖w‖Hm+1(O),



6 I BABUŠKA AND V. NISTOR

where w ∈ Hm+1(O) is the unique solution of ∆w = 0 and w|∂O = v (m ∈ Z+). An
equivalent norm is given by inf ‖u‖Hm+1(O), where u ∈ Hm+1(O) satisfies u = v on
∂O. If r = m+1/2, m ∈ Z+, the space H−r(∂O) is defined as the dual of Hr(∂Ω).
We shall denote by 〈v, φ〉∂O = v(φ), the value of v ∈ H−r(∂O) on φ ∈ Hr(∂O).

Example 1.3. If n = 2, then each connected component of ∂O is diffeomorphic to
S1, the unit circle. It is therefore enough to define Hr(S1) in this case, which has a
more concrete description. Let f ∈ C∞(S1). Then, up to a multiplicative constant

(9) ‖f‖2
Hr(S1) = π

∞∑
n=−∞

|f̂(n)|2(1 + |n|)2r,

where 2πf̂(n) =
∫ 1

0
f(e2πıθ)e−2πınθdθ, n ∈ Z, are the Fourier coefficients of f . Then

Hr(S1) is the closure of C∞(S1) in the norm ‖f‖Hr(S1).

The following example is relevant for the discussion of concentrated loads and
moments.

Example 1.4. The Dirac measure (or distribution) concentrated at a ∈ ∂O is the
distribution δa defined by

〈δa, φ〉∂O := φ(a), φ ∈ C∞(∂O).

An explicit calculation shows that δa ∈ H−(n−1)/2−ε(∂O) and the resulting norms
behave as ‖δa‖H−(n−1)/2−ε ≈ ε−1/2 →∞ as ε→ 0.

In Section 4, it will be convenient to use another definition of fractional Sobolev
spaces on ∂O, which yields a more suitable form of the inner product. Namely, let
∆ be the Laplace operator on ∂O. Recall that ∆ is defined by

−(∆v, v) =
∫

∂O
|∇v|2dS(x).

Then let uj ∈ L2(∂O), j ∈ Z+, be an orthonormal basis of L2(∂O) consisting
of eigenfunctions of −∆, that is, −∆uj = λjuj . We can assume that λj ≤ λj+1

for all j ∈ Z+. In particular, it follows that λ0 = 0 and that u0 is constant on
each connected component of ∂O. We then define Hs/2(∂O) to be the set of those
functions u =

∑
j ajuj ∈ L2(∂O) for which

‖u‖2
Hs(∂O) :=

∑
j

(1 + λj)s|aj |2 <∞.

If also v =
∑

j bjuj ∈ Hs(∂O), then the inner product in Hs(∂O) is given by

(u, v)Hs(∂O) =
∑

j

(1 + λj)sajbj .

The advantage of this formula is that it is immediately seen that

(10) (u, 1)Hs(∂O) =
∫

∂O
u(x)dS(x),

for all s ≥ 0. For s < 0, the same conclusion follows by duality.
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2. The Generalized Finite Element Method

We now recall a few basic facts about the Generalized Finite Element Method
[2, 5, 16]. This method is quite convenient when one needs finite element spaces
with high regularity. Most of the results of this section work for a general bounded
open set Ω, except the application to the boundary value problems, Section 4, in
which case we shall need to assume that Ω has a smooth boundary.

2.1. Basic facts. Let k ∈ Z+. We shall denote as usual

|u|W k,∞(Ω) := max
|α|=k

‖∂αu‖L∞(Ω), ‖u‖W k,∞(Ω) := max
|α|≤k

‖∂αu‖L∞(Ω),

W k,∞(Ω) := {u, ‖u‖W k,∞(Ω) < ∞}, and ‖∇ω‖W k,∞(Ω) :=
∑

j ‖∂jω‖W k,∞(Ω). In
particular, |u|W 0,∞(Ω) = ‖u‖W 0,∞(Ω) = ‖u‖L∞(Ω).

We shall need the following slight generalization of a definition from [5, 16]:

Definition 2.1. Let Ω ⊂ Rn be an open set and {ωj}N
j=1 be an open cover of Ω

such that any x ∈ Ω belongs to at most κ of the sets ωj . Also, let {φj} be a partition
of unity consisting of Wm,∞(Ω) functions and subordinated to the covering {ωj}
(i.e., suppφj ⊂ ωj). If

(11) ‖∂αφj‖L∞(Ω) ≤ Ck/(diamωj)k, k = |α| ≤ m,

for any j = 1, . . . , N , then {φj} is called a (κ,C0, C1, . . . , Cm) partition of unity.

Assume also that we are given linear subspaces Ψj ∈ Hm(ωj), j = 1, 2, . . . , N .
The spaces Ψj will be called local approximation spaces and will be used to define
the space

(12) S = SGFEM :=
{ N∑

j=1

φjvj , vj ∈ Ψj

}
⊂ Hm(∪ωj),

which will be called the GFEM–space. The set {ωj , φj ,Ψj} will be called the set of
data defining the GFEM–space S.

A basic approximation property of the GFEM–spaces is the following Theorem
from [5].

Theorem 2.2 (Babuška-Melenk). We shall use the notations and definitions of
Definition 2.1 and after. Let {φj} be a (κ,C0, C1) partition of unity. Also, let
vj ∈ Ψj ⊂ H1(ωj), uap :=

∑
j φjvj ∈ S, and dj = diamωj, the diameter of ωj.

Then

(13)

‖u− uap‖2
L2(Ω) ≤ κC2

0

∑
j

‖u− vj‖2
L2(ωj)

and

‖∇(u− uap)‖2
L2(Ω) ≤ 2κ

∑
j

( C2
1‖u− vj‖2

L2(ωj)

(dj)2
+ C2

0‖∇(u− vj)‖2
L2(ωj)

)
.

2.2. Conditions on GFEM data. Our main results will involve a sequence of
GFEM–spaces Sν . Let {ωj , φj ,Ψj}N

j=1 be a single, fixed data defining a GFEM–
space S, as in the previous subsection, and let Σ := {ωj , φj ,Ψj , ω

∗
j }, where ω∗j ⊂ ωj .

We now introduce some conditions on Σ that will be used in the next subsection
to formulate our assumptions on the sequence Σν = {ων

j , φ
ν
j ,Ψ

ν
j , ω

∗ν
j }Nν

j=1 defining
GFEM–spaces Sν , ν ∈ Z+, studied in this paper.
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Recall that ω is star-shaped with respect to ω∗ ⊂ ω if for every x ∈ ω and every
y ∈ ω∗, the segment with end points x and y is completely contained in ω.

Condition A(h). We have that Ω = ∪N
j=1ωj and for each j = 1, 2, . . . , N , the set

ωj is open of diameter dj ≤ h ≤ 1 and ω∗j ⊂ ωj is an open ball of diameter ≥ σh
such that ωj is star-shaped with respect to ω∗j .

Condition B. The family {φj}N
j=1 is a (κ,C0, C1, . . . , Cm) partition of unity.

Condition C. For each j = 1, 2, . . . , N , the space Ψj contains all polynomials of
degree λ and

(14) ‖w‖Hl(ωj) ≤ A‖w‖Hl(ω∗)

for any w ∈ Ψj, any 0 ≤ l ≤ m, and any ball ω∗ ⊂ ωj of diameter ≥ σh.

We shall need to use “admissible” subsets of Ω, a class of subsets that we now
define.

Definition 2.3. Let Σ = {ωj , φj ,Ψj , ω
∗
j }N

j=1 be as above and U ⊂ Ω be an open
subset. Denote by J(U) the set of those indices j such that ω∗j ⊂ U . We shall say
that U is admissible for Σ if, for all j = 1, . . . , N ,

(i) φj = 1 on ω∗j and
(ii)

∑
j∈J(U) φj = 1 on U .

We can now formulate our last condition.

Condition D. The domain Ω is admissible for the set Σ = {ωj , φj ,Ψj , ω
∗
j }N

j=1

defining the GFEM–space S.

Let us notice that, in view of our previous conditions, Condition D amounts to
the fact that φj = 1 on ω∗j for all j = 1, . . . , N .

2.3. Assumptions. We are now ready to formulate our assumptions.
(i) We assume that we are given a sequence Σν = {ων

j , φ
ν
j ,Ψ

ν
j , ω

∗ν
j }Nν

j=1, ν ∈ Z+,
defining GFEM–spaces Sν .

(ii) There exists constants A, Cj , σ, κ, λ, and m and a sequence hν → 0,
as ν → ∞, such that Σν satisfies Conditions A(hν), B, C, and D for each
ν ∈ Z+.

The constants A, Cj , σ, κ, λ, and m will be called structural constants. Note
that we must have Nν → ∞ as ν → ∞. For simplicity, we shall say below that
the sequence Σν satisfies the Conditions A–D instead of saying that it satisfies the
conditions A(hν), B, C, and D.

Let us recall now the following standard lemma.

Lemma 2.4. Let ψj be measurable functions defined on an open set W . Assume
that there exists an integer κ such that a point x ∈ W can belong to no more than
κ of the sets supp(ψj). Let f =

∑
j ψj. Then there exists a constant C > 0,

depending only on κ, such that ‖f‖2
Hl(W ) ≤ C

∑
j ‖ψj‖2

Hl(W ).

Proof. The inequality

(15) |a1 + a2 + . . .+ aM |2 ≤M
(
|a1|2 + |a2|2 + . . .+ |aM |2

)
,

with κ ≤M , gives the desired result. �

We can now establish the following proposition.
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Proposition 2.5. Under the assumptions of this subsection, we have that there
exists a constant B > 0 such that

(16) |w|Ht(U) ≤ Bh−t
ν ‖w‖L2(U),

for all 0 ≤ t ≤ m, ν ∈ Z+, w ∈ Sν , and U ⊂ Ω admissible for Σν . The constant B
may depend only on the structural constants A, Cj, κ, λ, σ, and m (in particular,
it is independent of ν, u, and the admissible set U).

Proof. Let us denote h = hν , for simplicity. Let w ∈ S. Since U is admissible, we
have that w =

∑
φjwj on U , with wj ∈ Ψj , the sum being taken over all j such

that ω∗j ⊂ U . Then Lemma 2.4 and Assumptions A–D give

|w|2Ht(U) ≤ C
∑

j

t∑
l=0

|φj |2W l,∞(ωj)
|wj |2Ht−l(ωj)

≤ C
∑

j

t∑
l=0

C2
l h

−2lB2h2l−2t|wj |2L2(ωj)
≤ CA2h−2t

∑
j

|wj |2L2(ω∗j )

≤ Ch−2t‖w‖2
L2(U),

where all the structural constants C above depend only on the structural constants
A, Cj , σ, κ, λ, and m. This proves the result. �

We obtained right away that, under the same assumptions as those in the above
proposition, that

‖w‖Ht(U) ≤ Bh−t
ν ‖w‖L2(U), w ∈ S.

In fact, this equation is equivalent to the proposition. Recall that the constant m
is the fixed integer appearing in Assumptions A–D.

2.4. Remarks. We now include a few simple remarks that will help clarify the
above conditions and assumptions.

Remark 2.6. Condition A(h) implies that the diameters of ωj are comparable with
h. Indeed, dj := diam(ωj) ≥ σh.

Remark 2.7. The explicit inequalities implied by Conditions A and B are

(17) ‖φj‖W l,∞(Ω) ≤ Clh
−l, l = 0, 1, . . . ,m,

by Definition 2.1.

Remark 2.8. Condition C is satisfied, for example, if Ψj = Qλ, the set of polyno-
mials of degree at most λ ≥ 1, see Section 6.

Remark 2.9. A typical example of an admissible set is obtained as follows. Fix a
subset J of indices j and let G be the set of points where

∑
j∈J φj = 1. Then the

interior of G is an admissible open subset of Ω.

Remark 2.10. If U ⊂ Ω is an admissible open set, then the sets ω∗j ⊂ U , must be
disjoint. Moreover, the boundary of U cannot be arbitrary, see Remark 6.7.
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Remark 2.11. Let, for each fixed j, {wji} be a basis of Ψj . Assume that Ω is
admissible. Then {φjwji} is a basis of the GFEM–space S. This is an important,
non-trivial consequence that is not always satisfied, see for example [29, 30].

Finally, let F be a family of open subsets of Ω. We shall say that F satisfies
the ν–chain condition if for any ∅ 6= A0 b Aν ⊂ Ω, there exist A0 b B1 b B2 b
. . . b Bν−1 b Aν , with all Bj ∈ F . The family of subsets of Ω admissible for
Σν satisfies the ν–chain condition for hν small, see Lemma 6.5 (the proof of this
fact requires that Ω be admissible for all Σν , namely Condition D). It is likely
that all our approximation results remain true if one replaces Condition D with the
conditions that the family of subsets of Ω admissible for Σν satisfies the ν–chain
condition for hν small enough.

3. Interior estimates for the GFEM

From now on, we shall assume that Σν = {ων
j , φ

ν
j ,Ψ

ν
j , ω

∗ν
j }, ν ∈ N, is a sequence

satisfying all assumptions formulated in Subsection 2.3. Also, Sν will be the result-
ing Generalized Finite Element Space of Equation (12) associated to the data and
hν → 0 will be the corresponding “small parameters.” In this section, the set Ω
will be a bounded, connected open subset of Rn (i.e., Ω will be a bounded domain).
We shall not require in this section that Ω have a smooth boundary.

In the following, we shall occasionally drop the index ν, in order not to overbur-
den the notation. For instance, we shall denote S = Sν , h = hν , ωj = ων

j , and
so on, when the index ν is understood. Also, recall that the structural constants A,
Cj, σ, κ, λ, and m appearing in Conditions A–D, except h = hν , will be fixed in
what follows.

3.1. Hs-approximation. We shall need a basic result on the approximation of
functions in Hs(Ω) with elements in the GFEM–space S, extending Theorem 2.2.
Only the case s = 1 will be needed in this section, but later on we shall also need
the general case.

For the following result, we shall need the well known Bramble–Hilbert lemma
in the form given in [9]. Let us recall this basic result in the form that we need
below, as well as the relevant definitions. Let ω ⊂ Rn be a bounded, open set and
let

ρmax(ω) = sup{ ρ, Ω is star-shaped with respect to a ball B ⊂ ω with radius ρ }.

The chunkiness parameter γ(ω) of ω is then γ(ω) := diam(ω)/ρmax(ω).
If f is a smooth function, let

Qy,f,n(x) = f(y)+
n∑

j=1

∂jf(y)(xj−yj)+. . .+
∑
|α|=t

f (α)(y)
α!

(x−y)α, α! = α1! . . . αn!,

be the Taylor polynomial of f at y of degree t. If B ⊂ ω is an open ball, then Qtf ,
the Taylor polynomial of degree t ∈ Z+ of f averaged over B is given by

(18) Qtf(x) =
∫

B

Qy,f,n(x)φB(y)dy,

with φB ∈ C∞c (B) a function with integral 1. (In [9], this polynomial is called the
Taylor polynomial of order t+ 1 of f averaged over B.) Note that, by integration
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by parts, we can extend the definition of Qtf to f ∈ L2(ω). We assume that all
the functions φB are affine equivalent to a fixed given function.

We shall need the following lemma (Lemma 4.3.8 from [9]).

Theorem 3.1 (Bramble–Hilbert). Let ω be an open set with chunkiness parameter
γ(ω) ≤ γ. Also, let B ⊂ ω be an open ball with radius ≥ ρmax(ω)/2 such that ω is
star-shaped with respect to B. Let Qt−1f be the Taylor polynomial of degree t − 1
of f averaged over B. Then

|f −Qt−1f |Hs(ω) ≤ Cl,n,γ diam(ω)t−s|f |Ht(ω), 0 ≤ s ≤ t.

Here Ct,n,γ > 0 is a constant depending only on t, n, and γ.

Recall that the local approximation spaces Ψj contain all polynomials of degree
≤ λ. We are ready now to prove the following theorem.

Theorem 3.2. Let U ⊂ Ω be an admissible subset and 0 ≤ s ≤ t ≤ λ+ 1, s ≤ m.
Let U ′ = ∪jωj, where j satisfies ω∗j ⊂ U . Then, for any v ∈ Ht(U ′), there exists
w ∈ Sν such that

‖v − w‖Hs(U) ≤ Cht−s
ν ‖v‖Ht(U ′)

for a constant C that depends only on the structural constants, and is, in particular,
independent of ν, v, and U .

Let us notice that, by taking s = t in the above theorem, we immediately obtain
that, using the same notation, that

(19) ‖w‖Ht(U) ≤ C‖v‖Ht(U ′).

Also, observe that Ω = ∪N
j=1ωj implies that U = U ′ if U = Ω.

Proof. Let h = hν , ωj = ων
j , and so on. We shall use the notation and the results

from [9][Chapter 4] introduced before Theorem 3.1. Let wj(f) = Qt−1f be the
Taylor polynomial of degree t − 1 of f averaged over ω∗j , for ω∗j ⊂ U . We set
wj(f) = 0 if t = 0 or if ω∗j 6⊂ U . Then, by the Bramble–Hilbert Lemma recalled
above (Theorem 3.1), we have

(20) |f − wj(f)|Hs(ωj) ≤ Cht−s|f |Ht(ωj),

with a constant C depending only on s, t, and σ (this is due to the fact that ωj

has dimeter ≤ hν and is star-shaped with respect to the ball ω∗j of dimeter ≥ σh,
so the chunkiness parameter of ωj satisfies γ(ωj) ≤ σ−1).

Fix now v ∈ Ht(U ′) arbitrary. Also, let wj = wj(v) ∈ Ψj and w =
∑

j φjwj ∈ S,
the sum being taken over all indices such that ω∗j ⊂ U . Then, using also Condition
B, Lemma 2.4, and

∑
j φj = 1 on U , we obtain

(21) |v − w|2Hr(U) ≤ C
∑

j

|φj(v − wj)|2Hr(ωj)

≤ C
∑

j

r∑
i=1

|φj |2W i,∞(ωj)
|(v − wj)|2Hr−i(ωj)

≤ C
∑

j

r∑
i=1

C2
i h

−2ih2t−2r+2i|v|2Ht(ωj)

≤ Cκh2t−2r|v|2Ht(U ′)

Summing over 0 ≤ r ≤ s and using 0 < h ≤ 1 gives the desired result. �
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Let us also record, for further use, the following well known Poincaré–Friedrichs
inequality [9], Lemma (4.3.8). (See also [9], Lemma (4.3.14), and [10], Equation
(2.2), Theorem 14.1, and Theorem 15.3., or [11, 31].) The precise statement that
we need is the following.

Theorem 3.3. Assume ω is an open set of diameter diam(ω) star-shaped with
respect to a ball ω∗ ⊂ ω of diameter ≥ σ diam(ω). Let 0 ≤ ψ ≤ 1 be a measurable
function on ω, ψ = 1 on ω∗, and v =

∫
ω
v(x)ψ(x)dx/

∫
ω
ψ(x)dx be the weighted

average of v over ω. Then there exists a constant CP that depends only on σ and
the dimension n, but not on ψ or ω, such that

(22) ‖v − v‖L2(ω) ≤ CP diam(ω)|v|H1(ω),

for all v ∈ H1(ω).

When ψ = φB from Equation (18), the result above reduces to the Bramble–
Hilbert lemma. Except for the fact that CP depends only on n and h, this result is
well known when v is the average of v over ω. The more general form of the above
theorem may be useful when checking that the assumptions of Subsection 2.3 are
satisfied for a suitable sequence Sν of GFEM–spaces.

Throughout this paper, Ĉ will denote a generic constant that depends only on
the dimension n.

Proof. Using a dilation and the homogeneity properties of the norms in the state-
ment, we see that we can reduce to the case h = σ−1 and ω∗ = B1, the ball of
radius 1 centered at the origin. Then ω ⊂ B2h = B2σ−1 . Let φ be the function
appearing in the definition of the averaged Taylor polynomial Qkf , Equation (18).
Thus φ has support in the unit ball ω∗ = B1.

Recall that Ĉ denotes a generic constant that depends only on the dimension n.
Let v ∈ H1(ω) be arbitrary. We subtract from v various constants to obtain, using
also the Bramble–Hilbert lemmma, Theorem 3.1, for l = 1 and k = 1,

‖v − v ‖L2(ω) ≤ ‖v −
∫

ω

φ(x)v(x)dx‖L2(ω) + ‖
∫

ω

φ(x)v(x)dx− v ‖L2(ω)

≤ Ĉ‖v‖H1(ω)+‖
∫

ω

φ(x)v(x)dx−v ‖L2(ω) ≤ Ĉ
(
‖v‖H1(ωj)+

∣∣ ∫
ω

φ(x)v(x)dx−v
∣∣),

where by
∫

ω
φ(x)v(x)dx − v we mean the constant function on ω with this value

(so its L2 norm is a multiple of this constant, and in our case this multiple can be
bounded by a constant depending only on the dimension n).

Let a :=
∫

ω
ψ(x)dx and g = φ − a−1ψ, so that, in particular,

∫
ω
g(x)dx = 0.

Since v = a−1
∫

ω
v(x)ψ(x)dx, it is enough to show that

(23)
∣∣∣ ∫

ω

g(x)v(x)dx
∣∣∣ ≤ Ĉ|v|H1(ω).

Let Sn−1 = ∂B1 denote the unit sphere of radius 1 in Rn (the boundary of the
unit ball B1). Let φ1 have support in the closure of B1 = ω∗, be constant on the ray
Rx′ ∩ B1, and satisfy

∫∞
0

(φ1(rx′) − a−1ψ(rx′))rn−1dr = 0, almost everywhere in
x′ ∈ Sn−1. (Note that the function to be integrated vanishes if r ≥ 2σ−1.) Then φ1

is bounded by a constant that depends only on the dimension. Let g1 = φ1− a−1ψ
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and let G(tx′) =
∫ t

0
g1(rx′)rn−1dr, so that |G(tx′)| ≤ Ĉtn. An integration by parts

then shows that ∫
ω

g1(x)v(x)dx =
∫

ω

G(x)∂rv(x)|x|1−ndx,

where ∂r is the derivative in the radial direction. Since G(x)|x|1−n is bounded by
a constant that depends only on the dimension n, we obtain that∣∣∣ ∫

ω

g1(x)v(x)dx
∣∣∣ ≤ Ĉ|v|H1(ω),

which is the desired Equation (23), but with g replaced by g1. It is therefore enough
to prove∣∣∣ ∫

ω

[
g1(x)− g(x)

]
v(x)dx

∣∣∣ =
∣∣∣ ∫

B1

[
g1(x)− g(x)

]
v(x)dx

∣∣∣ ≤ Ĉ|v|H1(ω),

where the first equality is due to the fact that g1 − g = φ1 − φ has support in B1.
Let ∂ν denote the derivative in the direction of the outer normal to ∂O. Since∫

B1

[
g1(x) − g(x)

]
dx = 0, we can find V be such that ∆V = g1 − g and ∂νV = 0

on the boundary of B1. Moreover, ‖∇V ‖L2 ≤ Ĉ‖g1 − g‖L2 ≤ Ĉ, where, we recall,
Ĉ is a generic constant that may depend only on the dimension n. Then∣∣∣ ∫

ω

[g1(x)− g(x)]v(x)dx
∣∣∣ =

∣∣∣ ∫
B1

∇V · ∇v(x)dx
∣∣∣ ≤ Ĉ|v|H1(ω).

The proof is now complete. �

For k = 1, we shall need the following consequence of Theorem 3.2, which re-
places Assumption 9.5 of [33] and does not require the open sets involved, except
Ω, to be admissible. Define

(24) S<
ν (Ω) := Sν ∩ Cc(Ω).

That is, S<
ν (Ω) consists of the elements of the GFEM–space Sν with compact

support inside Ω.
Recall that A b B means that the closure of A is a compact set contained in

the interior of B (i.e., A is a relatively compact subset of B). Also, recall that the
family F of subsets of Ω admissible for Σν satisfies the ν-chain condition for hν

small enough, see Subsection 2.4 and Lemma 6.5.
Our main goal in this section is to prove Theorem 3.12.

Proposition 3.4. Let U b Ω1 ⊂ Ω subsets of Ω and θ be the distance from ∂U
to ∂Ω1. Assume that U is admissible. Then there exists C > 0, independent of θ,
ν, and U , with the following property. For any u ∈ H2(Ω) with support in U , there
exists w ∈ S<

ν (Ω1) such that

‖u− w‖H1(Ω1) ≤ Chν‖u‖H2(Ω1),

if hν < θ.

Proof. Choose wj and w as in the proof of Theorem 3.2. We shall continue to
use the notation of that Theorem. In particular, h = hν . If h < θ, then wj = 0
unless ωj intersects U , which gives that the closure of ωj is completely contained
in Ω1. In particular, U ′ ⊂ Ω1 and the support of w constructed above is compact
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and contained in Ω1. Then we can replace U with U ′ in Equation (21) and we thus
obtain

‖u− w‖H1(Ω1) = ‖u− w‖H1(U ′) ≤ Ch‖u‖H2(U ′) = Ch‖u‖H2(Ω1).

This completes the proof. �

Remark 3.5. By taking C = 1 and w = 0 for h ≥ θ, we obtain

‖u− w‖H1(Ω1) ≤ Cθ−1hν‖u‖H2(Ω1),

for all ν (not just for hν < θ).

3.2. The super-approximation property. The assumptions of Subsection 2.3
continue to remain valid, in particular, all the structural constants below will be
independent on ν. Also, recall that we have considered in the Introduction the
bilinear form

(25) B(u, v) :=
∫

Ω

∇u · ∇v dx, u, v ∈ H1(Ω).

Our approach follows the approach from [21], as presented in [33][Section 9]. See
[8, 20, 23, 24] for related results on approximation in the “sup”–norm.

Lemma 3.6. Let ρ be a smooth function on ωj and w ∈ Ψj. Then there exists
w̃ ∈ Ψj such that

(26) ‖ρw − w̃‖H1(ωj) ≤ Ĉh‖ρ‖W 2,∞(ωj)‖w‖H1(ωj),

where, we recall, Ĉ > 0 may depend only on the dimension n (in particular, it is
independent of w, ρ, and j).

Proof. We shall use the inner product induced from H1(ωj). Let ρ ∈ W 2,∞(ωj)
be given.

To prove the lemma, we shall assume first that w ∈ Ψj is a constant. Let L
be the degree one Taylor polynomial approximation of ρ at the center of the ball
ω∗j . Then L ∈ Ψj , because first order polynomials are in Ψj (Condition C). Since
h ≤ 1, we obtain

‖ρ− L‖W 1,∞(ωj) ≤ Ĉh‖ρ‖W 2,∞(ωj).

Choose w̃ = Lw. Then

‖ρw − w̃‖H1(ωj) = ‖ρw − Lw‖H1(ωj) ≤ ‖ρ− L‖W 1,∞(ωj)‖w‖H1(ωj)

≤ Ĉh‖ρ‖W 2,∞(ωj)‖w‖H1(ωj).

Assume now that w ∈ Ψj is such that (w, 1) = 0, that is, w is orthogonal in
H1(ωj) to the subspace generated by constants. We then write

ρ = ρ̃+ ρ∗,

where ρ̃ is a constant function (say the value of ρ at the center of ω∗) and

(27) ‖ρ∗‖L∞(ωj) ≤ Ĉh‖∇ρ‖L∞(ωj).

We shall choose then w̃ = ρ̃w ∈ Ψj , which makes sense since Ψj is a vector space.
Then

‖ρw − w̃‖H1(ωj) = ‖ρ∗w‖H1(ωj) ≤ C‖∇ρ∗‖L∞(ωj)‖w‖L2(ωj)

+ C‖ρ∗‖L∞(ωj)‖w‖H1(ωj) ≤ Ĉh‖∇ρ‖L∞(ωj)‖w‖H1(ωj),
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where in the last step we have used the Poincaré–Friedrichs inequality for ωj (The-
orem 3.3) to estimate ‖w‖L2(ωj) and Equation (27) above to estimate the second
term.

For a general w ∈ Ψj , we decompose w = w1 + w2 with w1 a constant and w2

orthogonal to the space of constants and choose w̃1 and w̃2 as above. Then

‖ρw − w̃1 − w̃2‖H1(ωj) ≤ ‖ρw1 − w̃1‖H1(ωj) + ‖ρw2 − w̃2‖H1(ωj)

≤ Ĉh‖ρ‖W 2,∞(ωj)‖w1‖H1(ωj) + Ĉh‖ρ‖W 2,∞(ωj)‖w2‖H1(ωj)

≤ Ĉh‖ρ‖W 2,∞(ωj)‖w‖H1(ωj).

The lemma is now proved. �

Recall that we denote A b B if A, the closure of A in R2, is a compact subset
of the interior of B. Also, recall from Equation (24) that S<

ν (A) denotes the set of
elements in Sν with compact support contained in A, for any open subset A ⊂ Ω.

An important technical step in our proof of the Theorem 3.12 is the following
“super-approximation” result.

Proposition 3.7. Let ρ ∈ W 2,∞(Ω) and w ∈ Sν . Then there exists w̃ ∈ Sν such
that

(28) ‖ρw − w̃‖H1(Ω) ≤ Chν‖ρ‖W 2,∞(Ω)‖w‖H1(Ω),

where C is independent of ν. If w has support in Ω1 b Ω2 and θ is the distance
from ∂Ω1 to ∂Ω2, then w ∈ S<

ν (Ω2) for hν < θ.

As explained above, the constant C may depend on the structural constants A,
Cj , κ, m, σ, and λ, but is independent of h = hν and of the number Nν of sets
{ωj}. In particular, it is independent of the GFEM–space Sν used.

Proof. Let h = hν and

(29) w =
N∑

j=1

φjwj ∈ Sν , wj ∈ Ψj .

Let w̃j be the orthogonal projection of ρwj onto Ψj in the inner product of H1(ωj).
Lemma 3.6 then shows that

(30) ‖ρwj − w̃j‖H1(ωj) ≤ Ĉh‖ρ‖W 2,∞(Ω)‖wj‖H1(ωj).

Moreover, we have that
∫

ωj
(ρwj − w̃j)dx = 0 because the constant functions are in

Ψj and ρwj − w̃j is orthogonal to Ψj .
Let w̃ :=

∑N
j=1 φjw̃j . Then ‖∇φj‖L∞(ωj) ≤ C1/h by Equation (11) and

‖ρwj − w̃j‖L2(ωj) ≤ CPh‖ρwj − w̃j‖H1(ωj) ≤ CP Ĉh
2‖ρ‖W 2,∞(Ω)‖wj‖H1(ωj),

by the Poincaré-Friedrichs inequality (Theorem 3.3), and hence

‖ρw−w̃‖2
H1(Ω) = ‖

N∑
j=1

φj(ρwj−w̃j)‖2
H1(Ω) ≤ C

N∑
j=1

(
‖φj‖2

L∞(ωj)
‖ρwj−w̃j‖2

H1(ωj)

+ ‖∇φj‖2
L∞(ωj)

‖ρwj − w̃j‖2
L2(ωj)

)
≤ Ch2‖ρ‖2

W 2,∞(Ω)

N∑
j=1

‖wj‖2
H1(ωj)

,
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where for the first inequality we have used also Lemma 2.4. The result will follow
now if we can prove that

∑N
j=1 ‖wj‖2

H1(ωj)
≤ C‖w‖2

H1(Ω), for any w =
∑N

j=1 φjwj ,
as above and C a constant independent of S = Sν . Indeed, since φj = 1 on ω∗j , by
Condition D, we have w = wj on ω∗j , and hence

‖w‖2
H1(Ω) ≥

N∑
j=1

‖wj‖2
H1(ω∗j ) ≥ A−2

N∑
j=1

‖wj‖2
H1(ωj)

,

by Condition C (A is the constant appearing in that assumption).
The proof of the last part is completed as in Proposition 3.4. �

3.3. Estimates on “discrete–harmonic” functions. We shall also need the
following “inverse property,” which is somewhat similar to Assumption A.3. in [21]
or Assumption 9.2 in [33].

The rest of this section follows closely the approach in the paper of Nitsche
and Schatz [21], relying also from the survey paper [33] (which in turn is based
on the paper by Nitsche and Schatz). There are, however, some differences in the
assumptions that we are using, so we include complete proofs for the convenience
of the reader. For instance, the following lemma, Lemma 3.8, plays the role of
Assumption A.3. in the Nitsche–Schatz article [21], respectively, of the Assumption
9.2 (Inverse assumption) in Wahlbin’s article. Also, the following lemma is an
analog of Lemma 5.2 of [21], respectively, of Lemma 9.1 of [33].

Lemma 3.8. There exists a constant C > 0, depending only on the structural
constants, such that

‖w‖L2(U) ≤ Ch−j
ν ‖w‖H−j(U),

for all 0 ≤ j ≤ m, ν ∈ Z+, w ∈ Sν , and U ⊂ Ω admissible for Σν .

Proof. Let h = hν . We have

‖w‖H−j(Ω) = sup
φ

|〈w, φ〉|
‖φ‖Hj(Ω)

≥ (w,w)
‖w‖Hj(Ω)

=
‖w‖2

L2(Ω)

‖w‖Hj(Ω)
≥ C−1hj‖w‖L2(Ω),

by Proposition 2.5. �

We now prove the following crucial lemma.

Lemma 3.9. Let A b A′ b Ω be open subsets. Then there exists C > 0 with the
following property. If w ∈ Sν and

(31) B(w,χ) = 0, for all χ ∈ S<
ν (A′),

then, for hν small enough, ‖w‖H1(A) ≤ C‖w‖L2(A′), with C depending on the dis-
tance θ from ∂A and ∂A′, but not on ν or w.

Proof. The proof is very similar to the one in [21, 33], using Proposition 2.5 in
place of Condition A.3, respectively Assumption 9.2 (“Inverse assumption”), and
Proposition 3.7 in place of Assumption A.2, respectively Assumption 9.1 (“Super-
approximation”), of [21], respectively [33].

Let h = hν be small enough. Let us chose open sets A b A0 b A1 b A′ with A1

admissible for Σν and with the distances between the boundaries comparable with
θ. Also, let ω ∈ C∞c (A0), with ω = 1 on A and ω ≥ 0 on A0 such that all the norms
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‖ω‖W k,∞ are bounded by a constant depending only on θ. Then, by Equation (31),
we obtain

‖∇w‖2
L2(A) ≤ (∇w,ω∇w) = (∇w,∇(ωw))− (∇w,∇(ω)w)

= (∇w,∇(ωw − ψ)) +
1
2
(w, (∆ω)w),

where the inner products are in L2(A0) and ψ ∈ S<
ν (A0). Proposition 3.7 then

gives
‖∇w‖2

L2(A) ≤ Ch‖ω‖W 2,∞(Ω)‖w‖2
H1(A0)

+ C‖w‖2
L2(A0)

,

which, in turn, implies

(32) ‖w‖H1(A) ≤ C
(
h1/2‖w‖H1(A0) + ‖w‖L2(A0)),

where all the constants depend only on θ. We now repeat the argument for A0 b
A1 b Ω (and A replaced by A0 and A0 replaced by A1), which gives

(33) ‖w‖H1(A0) ≤ C
(
h1/2‖w‖H1(A1) + ‖w‖L2(A1)

)
.

Combining Equations (32) and (33) and using also h ≤ 1, we obtain

(34) ‖w‖H1(A) ≤ C
(
h‖w‖H1(A1) + C‖w‖L2(A1)

)
.

Then we use Proposition 2.5 to obtain that h‖w‖H1(A1) ≤ C‖w‖L2(A1), with C
independent of w and ν ∈ Z+. This finally gives

(35) ‖w‖H1(A) ≤ C‖w‖L2(A1) ≤ C‖w‖L2(A′),

with a constant depending only on θ. The proof is now complete. �

We shall need the following simple estimate.

Lemma 3.10. Let Φ(x) = log |x| if n = 2, Φ(x) = |x|2−n, if n 6= 2. Let U ⊂ Ω be
an open subset. Then there exists C > 0, independent of U , such that

Φ ∗ u(x) :=
∫

U

Φ(x− y)u(y)dy

satisfies
‖Φ ∗ u‖Hl+2(U) ≤ C‖u‖Hl(U),

for any l ∈ Z and any u ∈ C∞c (U). The constant C will depend on Ω, however.

Proof. Fix U ⊂ Ω and let u ∈ C∞c (U) ⊂ C∞c (Ω) and v = Φ ∗ u. We have ∆v = cnu
for some constant cn depending only on the dimension n (this well known fact is
proved, for example, in [11]). The generic constants below, denoted C, are allowed
to depend only on R and the dimension n.

Let O = BR(0) be the ball of radius R > 3 diam(Ω) centered at the origin, where
diam(Ω) is the diameter of Ω. We shall assume that R is very large. In particular,
we shall assume that Ω ⊂ BR/3(0). Let η : [0,∞) → R be a smooth function such
that η(t) = 1 if t ≤ diam(Ω) and η(t) = 0 if t ≥ 2 diam(Ω). Let Φ1(x) = η(|x|)Φ(x)
and define v = Φ1 ∗ u.

Then v(x) vanishes if the distance from x to Ω is greater than 2 diam(Ω) < 2R,
so v = 0 on ∂O = ∂BR(0). Also, Φ(x) = Φ1(x) for |x| ≤ diam(Ω), and hence
v(x) = Φ ∗ u(x) for x ∈ Ω. Moreover, ∆v = (∆Φ1) ∗ u = cnu + φ ∗ u, where
φ(x) = ∆Φ1(x) for x 6= 0 and φ(x) = 0 if |x| ≤ diam(Ω). Since φ ∈ L1(Rn),
we have that ‖φ ∗ u‖Hl(Rn) ≤ C‖u‖Hl(Rn), and hence ‖∆v‖Hl(Rn) ≤ C‖u‖Hl(Rn).
Finally, since v = 0 on ∂O, we obtain that ‖v‖Hl+2(Ω) ≤ C‖u‖Hl(Rn), by standard
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estimates on elliptic boundary value problems (see [11] or [31], for instance). This
proves that

‖Φ ∗ u|U‖Hl+2(U) = ‖v|U‖Hl+2(U) ≤ C‖u‖Hl(Rn) = C‖u‖Hl(U).

The proof is complete. �

An alternative, shorter proof of this lemma can be obtained using the fact that,
for any smooth, compactly supported function, u→ ω(Φ∗u) is a pseudodifferential
operator of order −2 with compact distribution kernel [32].

We define

(36) ‖u‖H−s
0 (U) = sup

|(u, v)|
‖v‖Hs(U)

≤ ‖u‖H−s(U), 0 6= v ∈ C∞c (U)

for any open set U , any u ∈ L2(U), and any s ∈ N. We define H−s
0 (U) to be the

completion of L2(U) in the norm ‖u‖H−s
0 (U). Then H−s

0 (U), s ∈ N, identifies with
the dual of Hs

0(U).
Let θ be the distance from ∂A and ∂A′, as before. We now prove the following

lemma.

Lemma 3.11. We keep the notation and assumption of Lemma 3.9. In particular,
we assume that w ∈ Sν satisfies Equation (31). Then, for hν small enough,

(37) ‖w‖L2(A) ≤ C‖w‖H−m(A′),

where C is a constant depending θ and the structural constants, but not on ν.

Combining Lemmas 3.9 and 3.11, we obtain

(38) ‖w‖H1(A) ≤ C‖w‖H−m(A′),

for hν small enough and any w ∈ Sν satisfying the assumptions of Lemma 3.9.

Proof. Let h = hν and A b B0 b B1 b A′ be open sets with B0 admissible. Note
that Lemma 3.9 gives

(39) ‖w‖H1(B1) ≤ C‖w‖L2(A′).

For any v ∈ C∞c (A), let V := cnΦ ∗ v ∈ H l+2(B1), where cn is chosen such that
∆V = v (see [11]). Lemma 3.10 then gives

(40) ‖V ‖Hl+2(B1) ≤ C‖v‖Hl(B1) = C‖v‖Hl(A), l ∈ Z+,

for some constant C that depends only on Ω.
Let ω ∈ C∞c (B0) with ω = 1 on A. Since ωV ∈ C∞c (B0) and B0 is admissible, we

know from Proposition 3.4 that, for h small enough, there exists χ ∈ S<
ν (B1) such

that

(41) ‖ωV − χ‖H1(B1) ≤ Ch‖ωV ‖H2(B1) ≤ Ch‖V ‖H2(B1) ≤ Ch‖v‖L2(A).

Then, still assuming that v ∈ C∞c (A) is arbitrary and taking into account also
Equation (31), we obtain

(w, v)A = (ωw, v)A =
∫

A

ωw∆V dx =
∫

B0

ωw∆V dx = −
∫

B0

∇(ωw) · ∇V dx

= −
∫

B0

w
(
2∇ω · ∇V+V∆ω

)
dx−

∫
B1

∇w · ∇(ωV − χ)dx,



DISTRIBUTIONS 19

for any χ ∈ S<
ν (B1) ⊂ S<

ν (A′), where the inner products are calculated on the
indicated sets. Then, by combining Equations (39), (40), and (41), as well as
Lemma 3.9, we obtain, for all l ≥ 0,

|(w, v)A| ≤ C‖w‖H−l−1
0 (B0)

‖V ‖Hl+2(B1) + Ch‖w‖H1(B1)‖V ‖H2(B1)

≤ C
(
‖w‖H−l−1

0 (A′) + h‖w‖L2(A′)

)
‖v‖Hl(A),

and hence

(42) ‖w‖H−l
0 (A) ≤ C

(
‖w‖H−l−1

0 (A′) + h‖w‖L2(A′)

)
.

Next, let us choose a sequence of open sets A b B1 b B2 b . . . b Bm b A′ with
the distances between the boundaries comparable with θ. Changing notation and
iterating Equation (42), using also h ≤ 1, we obtain

(43) ‖w‖L2(A) ≤ C
(
‖w‖H−1

0 (B1)
+ h‖w‖L2(B1)

)
≤ C

(
‖w‖H−2

0 (B2)
+ h‖w‖L2(B2)

)
≤ . . .

≤ C
(
‖w‖H−m

0 (Bm) + h‖w‖L2(Bm)

)
.

We now repeat the above reasoning. We change notation again, so that, this
time, Bm becomes B1, then we chose as before a sequence of open sets

(44) A b B1 b B2 b . . . b Bm b A′.

We can assume that the distances between the boundaries are comparable with
θ. Also, we can assume that Bm is admissible, since the family of admissible sets
satisfies the ν-chain condition for h small enough, see Lemma 6.5. Then we iterate
Equation (43) using again h ≤ 1, and obtain,

‖w‖L2(A) ≤ C
(
‖w‖H−m

0 (B1)
+ h‖w‖L2(B1)

)
≤ C

(
‖w‖H−m

0 (B2)
+ h2‖w‖L2(B2)

)
≤ . . . ≤ C

(
‖w‖H−m

0 (Bm) + hm‖w‖L2(Bm)

)
≤ C

(
‖w‖H−m

0 (Bm) + ‖w‖H−m(Bm)

)
≤ C‖w‖H−m(Bm),

where at the end we have used the inverse property ‖w‖L2(U) ≤ Ch−m‖w‖H−m(U)

for any admissible open subset U ⊂ Ω, (see Lemma 3.8). The proof is complete. �

3.4. The interior error estimate. The following result, the main result of this
section, is an analog of [21][Theorem 5.1] and of [33][Theorem 9.2].

Let Sν be the GFEM–spaces associated to the data Σν = {φν
j , ω

ν
j ,Ψ

ν
j , ω

∗ν
j }

satisfying the Assumptions of Subsectio 2.3.

Theorem 3.12. Let A b B ⊂ Ω be open subsets. Then there exists C > 0
with the following property. If u ∈ H1(Ω) and uν ∈ Sν , ν ∈ Z+, are such that
B(u− uν , χ) = 0 for all χ ∈ S<

ν (Ω), then for hν small enough,

‖u− uν‖H1(A) ≤ C
(

inf
χ∈Sν

‖u− χ‖H1(B) + ‖u− uν‖H−m(B)

)
.

The constant C depends only on the distance from ∂A to ∂B and the structural
constants, but not on ν ∈ Z+.

For example, uν in the above theorem could be the GFEM–approximation of u
(see Equation (54)), but our assumptions on uν are in fact somewhat weaker.
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Proof. Let A b A1 b A2 b B ⊂ Ω. Choose ω ∈ C∞c (A2) such that ω = 1 on A1.
Let P1 be the H1(Ω) orthogonal projection onto S<

ν (A1) ⊂ S ⊂ H1(Ω). Then on
A1

(45) u− uν =
(
ωu− P1(ωu)

)
+

(
P1(ωu)− uν

)
.

Then, by the general properties of orthogonal projections, we have

(46) ‖ωu− P1(ωu)‖H1(Ω) ≤ ‖ωu‖H1(Ω) ≤ C‖u‖H1(B).

Hence

(47) ‖ωu− P1(ωu)‖H−m(A1) ≤ ‖ωu− P1(ωu)‖H1(Ω) ≤ C‖u‖H1(B).

Let w = P1(ωu)−uν . Then B(w,χ) = B(ωu−uν , χ) = B(u−uν , χ) = 0, for all
χ ∈ S<

ν (A1), and hence w satisfies the assumptions of Lemmas 3.9 and 3.11. From
this, using also Equations (38), (45), and (47), we obtain

(48) ‖w‖H1(A) ≤ C‖w‖H−m(A1) ≤ ‖ωu− P1(ωu)‖H−m(A1) + ‖u− uν‖H−m(A1)

≤ ‖u‖H1(B) + ‖u− uν‖H−m(A1).

Equations (45–48) then give

‖u− uν‖H1(A) ≤ ‖ωu− P1(ωu)‖H1(A) + ‖w‖H1(A) by (45)
≤ C‖u‖H1(B) + ‖u− uν‖H−m(A1) by (46)–(48).

The desired result follows by replacing u and uν with u−χ and, respectively, uν−χ,
with χ in S = Sν . �

4. Discrete solutions

We assume in this and next section that Ω = O, a smooth, bounded domain.
We discuss in this section a variational formulation of the boundary value problem
(1). We also prove the existence, uniqueness of the solution of this problem as well
as the estimate (2). (So we establish the well posedness of this boundary value
problem.) The discrete solutions, or GFEM–approximations to u are also defined
using the weak formulation of (1). We begin with the definition of the discrete
solutions. The results extend to the case of g with low regularity the usual results
and definitions of the weak solution and its discretization, thus, the reader willing
to accept that the theory is essentially the same as in the case g ∈ L2(∂O), can
skip this section at a first reading.

Let us fix, in this section, a finite dimensional subspace S ⊂ Hm(O) containing
all constant functions. In applications, S = Sν , for some ν ∈ Z+, but that is not
required in this section.

4.1. Discrete solutions. Consider the usual bilinear form

(49) B(φ, ψ) :=
∫
O
∇φ · ∇ψ dx,

where φ, ψ ∈ H1(O). Assume, for the purpose of this discussion, that Ω = O is
smooth, so that the boundary value problem (1) is defined.

Recall that we write 〈u, v〉∂O := u(v) ∈ C for any u ∈ H1−k(O) and v ∈ Hk−1(O)
for the “value of u evaluated at v.”
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Lemma 4.1. Assume 〈g, 1〉∂O = 0 and g ∈ H−1/2−k(∂O), k ≤ m−1. Then there
exists a unique uS ∈ S such that 〈uS , 1〉 = 0 and

(50) B(uS , vS) = 〈g, vS |∂O〉∂O, for all vS ∈ S,

for all vS ∈ S. (Recall that S ⊂ Hm(O).)

Note that S ⊂ Hm(O) and g ∈ H−1/2−k(∂O), k ≤ m − 1, guarantees that
〈g, vS |∂O〉∂O is defined.

Proof. Let S0 be the subspace of the GFEM–space S consisting of functions χ0 ∈ S
with 〈χ0, 1〉 =

∫
O χ0(x)dx = 0. The bilinear form B is non-degenerate on S0 (that

is, if φ ∈ S0 is such that B(φ, ψ) = 0 for all ψ ∈ S0, then φ = 0). This gives by
standard linear algebra the existence of a unique uS ∈ S0 such that Equation (50)
is satisfied for all vS ∈ S0. �

Definition 4.2. If uS ∈ S is as in the above Lemma, then we shall say that uS is
the GFEM–approximation of the solution of Equation (1).

Similarly, if g ∈ H1/2(O) and 〈g, 1〉∂O =
∫

∂O g(x)dS(x) = 0, then the solution u
of Equation (1) is in H2(O), 〈u, 1〉 = 0 and,

(51) B(u, v) = 〈g, v|∂O〉∂O,

for all v smooth enough. Moreover, u is uniquely determined by these conditions.
This is of course, nothing but the weak formulation of the boundary value problem
of Equation (1). We now extend the formulation to the case when the data g is a
distribution.

Lemma 4.1 states only the existence and uniqueness of the discrete solution uS

of Equation (1). It claims nothing about the relation between uS and the exact
solution u of Equation (1). This will be discussed in the remaining of this section
and in the following section.

4.2. The weak solution. Let us begin with a remark that will justify the following
constructions.

Remark 4.3. When trying to extend the weak formulation of Equation (1) to g
with lower regularity (i.e., g a distribution), we face the following difficulty. Let
v ∈ H1+k(O) and w ∈ H1−k(O) = Hk−1(O)∗. We can chose vn, wn ∈ H1(O),
vn → v in the topology of H1+k(O) and wn → w in the topology of H1−k(O).
Then

B(wn, vn) = −
∫
O
wn∆vndx+

∫
∂O

(wn|∂O)∂νvndS(x).

Next, we notice that ∆vn → ∆v in Hk−1(O), and hence
∫
O wn∆vndx → 〈w,∆v〉.

Similarly, ∂νvn → ∂νv in Hk−1/2(∂O). Now, if the sequence B(wn, vn) had a limit
that depended only on w and v, then it would follow that the sequence of traces
wn|∂O would have a limit depending only on w. In turn, this would provide by a
continuous trace map H1−k(O) → H1/2−k(∂O), k ≥ 1, which is known not to be
possible.

For the reasons just explained, we introduce, following an idea from [22], the
space H̃−s(O) := H−s(O) ⊕ H−s−1/2(∂O), where s ∈ Z, s ≥ 2. Intuitively, the
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second component ζ of an element ũ = (u, ζ) in H̃−s(O) should be thought of as
some sort of trace at the boundary of u. We then define

(52)

B̃ : H̃1−k(O)×H1+k(O) → C by

B̃(ũ, V ) = −〈u,∆V 〉+ 〈ζ, ∂νV |∂O〉∂O, where

ũ = (u, ζ) ∈ H1−k(O)⊕H1/2−k(∂O) = H̃1−k(O), k ∈ N.

With this definition, we can now introduce weak solutions of Equation (1) for
r = 1− k, k ∈ Z+.

Definition 4.4. Let g ∈ H−1/2−k(∂Ω), k ∈ Z+. We say that u ∈ H̃1−k(Ω) satisfies
the Equation (1) (i.e., −∆u = 0, ∂νu = g ∈ H−1/2−k(∂Ω)) in weak sense (or that u
is a weak solution of the Equation (1)) if, and only if, there exists ζ ∈ H1/2−k(∂Ω)
such that

B̃(ũ, V ) = 〈g, V 〉∂O, where ũ = (u, ζ)

for all V ∈ H1+k(Ω).

The pair ũ = (u, ζ) above will also be called a weak solution of Equation (1).

Remark 4.5. The above definition of weak solutions of the Neumann problem
generalizes the classical definition. Indeed, if g is regular enough so that u ∈ H2(O)
is a classical solution of the Neumann problem with data g (i.e., of Equation (1))
then

B(u, V ) = B̃(ũ, V ) = 〈g, V 〉∂O
for all V ∈ H1+k(Ω), where ũ := (u, u|∂Ω). Hence u is a weak solution of Equation
(1) also in the sense of Definition 4.4.

We shall need the following simple observation.

Lemma 4.6. Let ũ, ũ1 ∈ H̃1−k(O) = H1−k(O) ⊕ H1/2−k(∂O), ũ = (u, ζ) and
ũ1 = (u1, ζ1). Then B̃(ũ, V ) = B̃(ũ1, V ) for all V ∈ H1+k(Ω) if, and only if,
u− u1 = c and ζ − ζ1 = c, where c is a constant.

Proof. The subspace V := {(−∆V, ∂νV )} ⊂ Hk−1(O)⊕Hk−1/2(∂Ω) has codimen-
sion one, by the solvability conditions of the Neumann problem. Moreover, the
solvability conditions for the Neumann problem (recalled in the proof of Proposi-
tion 4.9) show that the annihilator of V is the vector (1, 1). Our assumption is
equivalent to the fact that w := ũ1 − ũ satisfies 〈w,w1〉 for any w1 ∈ V. Since
H̃1−k(O) is the dual of Hk−1(O) ⊕Hk−1/2(∂Ω), it follows that ũ1 − ũ must be a
multiple of the non-zero vector (1, 1) spanning the annihilator of V. �

From the above lemma, Lemma 4.6, we obtain the following corollary.

Corollary 4.7. If ũ = (u, ζ) is a solution of Equation (1) in weak sense (Definition
4.4) then ζ is uniquely determined by u. Moreover, if ũ1 = (u1, ζ1) is another
solution of Equation (1), then u1 − u is a constant.

The usual properties of the solutions of the Neumann problem are therefore
satisfied. The above corollary also allows us to define u|∂O := ζ if (u, ζ) is a weak
solution of Equation (1) for some g ∈ H−1/2−k(∂O). By abuse of terminology, we
shall say that u ∈ H1−k(O) is a weak solution of Equation (1) if there exists ζ ∈
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H−1/2−k(∂O) (uniquely determined by the above Corollary) such that ũ = (u, ζ)
is a weak solution of that equation. In this case, we shall also write

(53) B(u+ u1, V ) := B̃(ũ, V ) +B(u1, V )

for any u1 ∈ H1(O). This is needed in Equation (54) below. See also (63).
Let uS ∈ S be the GFEM–approximation of the solution of Equation (1) (as

defined by Lemma 4.1). Also, let ũ = (u, ζ) be a weak solution of Equation (1).
The extension (53) of the definition of the bilinear form B is useful because, for
example, it allows us write that

(54) B(u− uS , vS) = 0, for all vS ∈ S.

The relation (54) is then equivalent to the Definition 4.2.
Let X and Y be normed spaces with norms ‖x‖X and ‖y‖Y and let B1 : X×Y →

C be a bilinear form. Recall that B1 is said to be continuous if, and only if, there
exists C < ∞ such that |B1(x, y)| ≤ C‖x‖X‖y‖Y for all x ∈ X and y ∈ Y . We
shall need the following result.

Theorem 4.8. Let X and Y be reflexive Banach spaces with norms ‖x‖X and
‖y‖Y . Also, let B1 : X × Y → C be a bilinear form. Assume that

(i) B1 is continuous;
(ii) There exists γ > 0 such that

inf
‖x‖X=1

sup
‖y‖Y ≤1

|B1(x, y)| ≥ γ;

(iii) sup
‖x‖X≤1

|B1(x, y)| > 0 whenever y 6= 0.

Then for any continuous functional F : Y → C there exists a unique x ∈ X such
that F (y) = B1(x, y), for all y ∈ Y . Moreover, we have ‖x‖ ≤ ‖F‖/γ.

This theorem is a generalization of the well known Lax–Milgram Lemma. For a
proof, see Theorem 5.2.1, page 112, of [1]. The proof in that book is an adaptation
of the proof in [17] and [19]. See also [18], page 294.

We now check that our form B̃ satisfies the conditions of Theorem 4.8.

Proposition 4.9. Let X ⊂ H̃1−k(O) := H1−k(O) ⊕ H1/2−k(∂O) consist of the
pairs ũ = (u, ζ) satisfying 〈u, 1〉 + 〈ζ, 1〉∂O = 0. Also, let Y ⊂ H1+k(O) consist of
the functions V such that 〈V, 1〉 :=

∫
O V (x)dx = 0. Then the restriction of the form

B̃ of Equation (52) to X × Y satisfies the conditions of Theorem 4.8 for k ≥ 1.

Proof. The bilinear form B̃ is immediately seen to be continuous by definition of
B̃ and its definition (Equation (52)) and by the definition of our negative order
Sobolev spaces. Therefore Condition (i) in Theorem 4.8 is satisfied.

To check that Condition (ii) in Theorem 4.8 is satisfied, we shall use the well
posedness of the Neumann problem on O. Namely, we shall use the fact that, for
any v ∈ Hk−1(O) and any g ∈ Hk−1/2(∂O) satisfying

〈1, v〉+ 〈1, g〉∂O :=
∫

Ω

v(x)dx+
∫

∂Ω

g(x)dS(x) = 0,

there exists a unique V ∈ Hk+1(O) such that

(55) −∆V = v, ∂νV = g, and 〈V, 1〉 = 0.
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Moreover, there exists CΩ > 0 such that

(56) ‖V ‖Hk+1(O) ≤ CΩ

(
‖v‖Hk−1(O) + ‖g‖Hk−1/2(∂O)

)
.

Let now ũ = (u, ζ) ∈ X ⊂ H1−k(O)⊕H1/2−k(∂O) =
(
Hk−1(O)⊕Hk−1/2(∂O)

)∗.
By definition, there exist v ∈ Hk−1(O) and g ∈ Hk−1/2(O), not both zero, such
that

(57) 〈ũ, (v, g)〉 := 〈u, v〉+ 〈ζ, g〉∂O ≥ 1
2
‖ũ‖

(
‖v‖2

Hk−1(O) + ‖g‖2
Hk−1/2(∂O)

)1/2

,

where ‖ũ‖2 := ‖u‖2
H1−k(O) + ‖ζ‖2

H1/2−k(∂O)
, and the last paranthesis stands for the

norm of the pair (v, g) in the Hilbert space Hk−1(O)⊕Hk−1/2(∂O).
If we replace v with v+λ and g with g+λ, where λ denotes the constant function

equal to λ ∈ C, then the pairing 〈u, v〉 + 〈ζ, g〉∂O does not change, since ũ ∈ X.
Moreover, choosing λ such that ‖v + λ‖2

Hk−1(O) + ‖g + λ‖2
Hk−1/2(∂O)

is minimal
means replacing the pair (v, g) with its projection onto the orthogonal complement
of (1, 1) (we have used here Equation (10)). This choice will not affect Equation
(57). We can thus assume that (v, g) ⊥ (1, 1). Therefore 〈1, v〉+ 〈1, g〉∂O = 0, and
hence the Neumann problem with data (v, g) is solvable. Let us chose then V as in
Equation (55).

With ũ = (u, ζ) ∈ X ⊂ H1−k(O)⊕H1/2−k(∂O), as above, we obtain

B̃(ũ, V ) = −〈u,∆V 〉+ 〈ζ, ∂νV |∂O〉∂O = 〈u, v〉+ 〈ζ, g〉∂O

≥ 1
2
‖ũ‖

(
‖v‖2

Hk−1(O) + ‖g‖2
Hk−1/2(∂O)

)1/2 ≥ C‖V ‖2
Hk+1(O).

This verifies Condition (ii) of Theorem 4.8.
Finally, to check Condition (iii) of Theorem 4.8, let V ∈ Y ⊂ H1+k(O) be such

that B̃(ũ, V ) = 0 for all ũ ∈ X ⊂ H̃1−k(O). Then the definition of the space X as
the orthogonal of (1, 1) shows that −∆V = c and ∂νV = c, for some c ∈ C. Green’s
formula gives

0 = −〈1,∆V 〉+ 〈1, ∂νV 〉∂O = c(vol(Ω) + vol(∂Ω)),

and hence c = 0. From this we next obtain that V is a constant. Since V ∈ Y , this
constant must also be zero. �

We therefore obtain from Theorem 4.8 that the Neumann problem, Equation (1)
has a weak solution for any g ∈ H−1/2−k(∂O).

Theorem 4.10. Let g ∈ H−1/2−k(∂O) satisfy 〈g, 1〉∂O = 0. Then there exists
ũ = (u, ζ) ∈ H̃1−k(O) satisfying the Equation (1) in weak sense. This solution is
uniquely determined if 〈u, 1〉 = 0 and then it satisfies

‖u‖H1−k(O) + ‖ζ‖H1/2−k(∂O) ≤ CO‖g‖H−1/2−k(∂O),

for a constant that depends only on O.

Conversely, let ũ = (u, ζ) be a weak solution of Equation (1). By taking ∆v =
0 and v|∂O arbitrary, it follows from the definition of the weak solutions, that
‖g‖H−1/2−k(∂O) ≤ C‖ζ‖H1/2−k(∂O). Then, by taking v = 0 on ∂O but ∆v arbitrary,
we again obtain from the definition that

(58) ‖ζ‖H1/2−k(∂O) ≤ C‖u‖H1−k(O).
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Finally, this gives that

(59) ‖g‖H−1/2−k(∂O) ≤ C‖u‖H1−k(O),

as in the case k < 0 (note however that in the case k ≥ 0, we also have ∆u = 0 in
distribution sense).

5. Approximate solution of the Laplace equation with distribution
boundary conditions using the GFEM

We shall consider the same setting as in the previous sections. For instance,
S = Sν , ν ∈ Z+, will be the GFEM–space associated to any of the data Σν

satisfying the assumptions of Subsection 2.3. Also, Ω = O, a smooth, bounded
domain, as in the previous section.

From now on, we shall fix the weak solution u ∈ H1−k(O), k ∈ N, k ≤ m− 1, of
the Equation (1) satisfying 〈u, 1〉 = 0. Recall from Definition 4.4 that this means
that there exists ζ ∈ H1/2−k(∂O) such that ũ = (u, ζ) is a weak solution of the
Equation (1) in the sense that

(60) B̃(ũ, V ) = 〈g, V 〉∂O, for all V ∈ H1+k(O),

where B̃(ũ, V ) = −〈u,∆V 〉 + 〈ζ, ∂νV |∂O〉∂O, see Equation (52). Here the data
g ∈ H−1/2−k(O) is also fixed.

With u, ζ, and g as in the paragraph above, we shall define

(61) u|∂Ω := ζ and ∂νu|∂Ω := g.

We shall think of ∂νu as the normal derivative of u in the direction of the outer
normal at the boundary. Recall from Equations (58) and (59), that ζ and g above
depend continuously on u. In the forthcoming paper [6], we shall compare our
definition of a solution of Equation (1) with the definitions in [15, 26] or [28].)

We shall also assume that

(62) 〈u, 1〉 = 〈g, 1〉∂O = 0,

which guarantees the existence of u and that

‖u‖H1−k(O) + ‖ζ‖H1/2−k(∂O) ≤ CO‖g‖H−1/2−k(∂O),

by Theorem 4.10.
These condition of Equation (60) imply that 〈u,∆φ〉 = 0 for all φ ∈ C∞c (O), that

is, that ∆u = 0 in the sense of distributions on O. Since ζ is determined by u, we
can write B(u, v) := B̃(ũ, v). More generally, we shall write

(63) B(u+ u1, v) = B̃(ũ, v) +B(u1, v),

whenever u1 ∈ H1(O). See also Equation (53). In particular,

B(u− uν , v) = 0,

where uν = uSν
∈ Sν is the GFEM–approximation of u, see Definition 4.2 and

Equation 54. This is in agreement with the results in [15] (especially Theorem 6.5)
on traces of functions w such that ∆w is regular enough.

We have the following estimate.

Lemma 5.1. With u as in Equation (60) above, we have

|B(u, v)| := |B̃(ũ, v)| ≤ C‖u‖H1−k(O)‖v‖H1+k(O),

for any v ∈ H1+k(O) and a constant C depending only on O.
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Proof. By definition, using also Equation (58), we have

(64) |B(u, v)| = | − 〈u,∆v〉+ 〈u|∂O, ∂νv〉∂O| ≤ |〈u,∆v〉|+ |〈u|∂O, ∂νv〉∂O|
≤ ‖u‖H1−k(O)‖∆v‖H−1+k(O) + ‖u‖H1/2−k(∂O)‖∂νv‖H−1/2+k(∂O)

≤ C‖u‖H1−k(O)‖v‖H1+k(O).

This completes the proof. �

We continue with more lemmas. We have the following “inverse property.”

Lemma 5.2. We have that

(65) ‖w‖Ht(O) ≤ Bhs−t
ν ‖w‖Hs(O),

for 0 ≤ s ≤ t ≤ m and w ∈ Sν , for a constant B independent of ν.

Proof. For s = t, the result is tautologically true with B = 1. For s = 0, the result
is given by Proposition 2.5. Since O is smooth, the general case by interpolation
using the results of [15] on the interpolation properties of Sobolev spaces on smooth,
bounded domains. �

In the proofs below, we shall occasionally denote h = hν .

Lemma 5.3. The GFEM–approximations uν satisfy

‖uν‖H1(O) ≤ Ch−k
ν ‖u‖H1−k(O)

for a constant C depending only on O (so C is independent of ν).

Proof. The Poincaré-Friedrichs inequality, Lemma 5.1, and Lemma 5.2 give

‖uν‖2
H1(O) ≤ CB(uν , uν) = CB(u, uν) ≤ C‖u‖H1−k(O)‖uν‖H1+k(O)

≤ Ch−k‖u‖H1−k(O)‖uν‖H1(O),

where in the last inequality we have used Lemma 5.2 for s = 1 and h = hν . �

This gives the following corollaries.

Corollary 5.4. Let k ≤ λ. Then the GFEM–approximations uν satisfy

‖uν‖H1−k(O) ≤ C‖u‖H1−k(O)

for a constant C depending only on O. In particular, uν depends continuously on
u and ‖u− uν‖H1−k(O) ≤ C‖u‖H1−k(O).

Proof. The result is well known for k = 0 since uν is the B–orthogonal projection
of u onto S (this is Cèa’s Lemma, see [9, 10]). We shall therefore assume that k ≥ 1.
Let h = hν .

Let v ∈ Hk−1(O) be arbitrary. Let c ∈ C be such that
∫
O(v − c)dx = 0. Then

we can find V ∈ Hk+1(O) such that

−∆V = v − c,

∫
O
V dx = 0, ∂νV = 0, and ‖V ‖Hk+1(O) ≤ C‖v‖Hk−1(O),

where C is a constant depending only on O. Also, chose w ∈ S such that

‖w‖Hk+1(O) ≤ C‖V ‖Hk+1(O) and ‖V − w‖H1(O) ≤ Chk‖V ‖Hk+1(O).
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This is possible by Theorem 3.2. Then

〈uν , v〉 = 〈uν , v − c〉 = −〈uν ,∆V 〉 = −〈uν ,∆V 〉+ 〈uν |∂O, ∂νV 〉∂O = B(uν , V )

= B(uν , w) +B(uν , V − w) = B(u,w) +B(uν , V − w).

Using also Lemmas 5.1 and 5.3, this gives

|〈uν , v〉| ≤ C‖u‖H1−k(Ω)‖w‖H1+k(Ω) + ‖uν‖H1(Ω)‖V − w‖H1(Ω)

≤ C‖u‖H1−k(Ω)‖V ‖Hk+1(Ω) + Ch−k‖u‖H1−k(Ω)h
k‖V ‖Hk+1(Ω)

≤ C‖u‖H1−k(Ω)‖V ‖Hk+1(Ω) ≤ C‖u‖H1−k(Ω)‖v‖Hk−1(Ω).

This gives the result since ‖uν‖H1−k(Ω) := sup |〈uν , v〉|/‖v‖Hk−1(Ω), v 6= 0. �

Similarly,

Corollary 5.5. We have ‖uν |∂O‖H1/2−k(∂O) ≤ C‖u‖H1−k(O) for a constant C
depending only on O. In particular, ‖(u− uν)|∂O‖H1/2−k(∂O) ≤ C‖u‖H1−k(O).

Proof. The proof is similar to that of the previous corollary. Let v ∈ H−1/2+k(∂O)
be arbitrary. Let c ∈ C be a constant such that

∫
∂O vdS =

∫
O cdx. Then we can

find a unique W ∈ H1+k(O) satisfying

∆W = c,

∫
O
Wdx = 0, ∂νW = v, and ‖W‖Hk+1(Ω) ≤ C‖v‖H−1/2+k(∂O),

for a constant C > 0 depending only on O. Using also Theorem 3.2, we choose w ∈
S such that ‖w‖Hk+1(Ω) ≤ C‖W‖Hk+1(Ω) and ‖W − w‖H1(Ω) ≤ Chk‖W‖Hk+1(Ω).

Then, using also 〈uν , 1〉 = 0, we obtain

〈uν |∂O, v〉∂O = 〈uν |∂O, ∂νW 〉∂O = 〈uν ,∆W 〉+B(uν ,W ) = B(uν ,W )

= B(uν , w) +B(uν ,W − w) = B(u,w) +B(uν ,W − w).

Using Lemmas 5.1 and 5.3, we then obtain

|〈uν |∂O, v〉∂O| ≤ C‖u‖H1−k(Ω)‖w‖H1+k(Ω) + ‖uν‖H1(Ω)‖W − w‖H1(Ω)

≤ C‖u‖H1−k(Ω)‖W‖H1+k(Ω) + Ch−k‖u‖H1−k(Ω)h
k‖W‖H1+k(O)

≤ C‖u‖H1−k(Ω)‖W‖H1+k(O) ≤ C‖u‖H1−k(Ω)‖v‖H−1/2+k(∂O),

which completes the proof in view of the definition of ‖uν‖H1/2−k(Ω). �

We now establish our main approximation results. Recall that u ∈ H1−k(O) is
the weak solution of ∆u = 0, ∂νu = g ∈ H−1/2−k(∂O) (Equation (60)) satisfying
〈u, 1〉 = 0 and that uν , ν ∈ Z+, are the GFEM–approximations of u, where S =
Sν are the GFEM–finite element spaces associated to a sequence of data Σν =
{ων

j , φ
ν
j ,Ψ

ν
j , ω

∗ν
j } satisfying the assumptions of Subsection 2.3. The constants C > 0

below are assumed to be independent of Sν .

Proposition 5.6. Assume that k+γ ≤ λ and k ≤ m−1, γ ∈ Z+. Then the error
u− uν ∈ H1−k(O) satisfies

‖u− uν‖H1−k−γ(Ω) ≤ Chγ
ν‖u‖H1−k(Ω),

with a constant C independent of ν.
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Proof. Let v ∈ H−1+k+γ(O) be arbitrary. Let c be a constant such that 〈v−c, 1〉 =
0. Then there exists a unique V ∈ H1+k+γ(O) such that

−∆V = v − c,

∫
O
V dx = 0, ∂νV = 0, and ‖V ‖H1+k+γ(O) ≤ C‖v‖H−1+k+γ(O),

for a constant C > 0 depending only on O.
Then, for any w ∈ S,

(66) 〈u− uν , v〉 = 〈u− uν , v − c〉 = −〈u− uν ,∆V 〉
= −〈u− uν ,∆V 〉+ 〈(u− uν)|∂O, ∂νV 〉∂O = B(u− uν , V ) = B(u− uν , V − w)

= −〈u− uν ,∆(V − w)〉+ 〈(u− uν)|∂O, ∂νw〉∂O.

Since k+γ ≤ λ and k ≤ m−1, the assumptions of Theorem 3.2 are satisfied, so we
can chose w ∈ S such that ‖w‖H1+k+γ(Ω) ≤ C‖V ‖H1+k+γ(Ω) and ‖V −w‖H1+k(Ω) ≤
Chγ‖V ‖H1+k+γ(Ω). In particular,

‖∂νw‖H−1/2+k(∂O) = ‖∂ν(V − w)‖H−1/2+k(∂O) ≤ hγ‖V ‖H1+k+γ(Ω).

From ‖V ‖H1+k+γ(Ω) ≤ C‖v‖H−1+k+γ(O), Corollaries 5.4 and 5.5, and Equation (66),
we then obtain,

|〈u−uν , v〉| ≤ ‖u−uν‖H1−k(Ω)‖V −w‖H1+k(Ω)+‖u−uν‖H1−k(Ω)‖∂νw‖H−1/2+k(∂O)

≤ Chγ‖u‖H1−k(Ω)‖v‖H−1+k+γ(O).

The proof is complete. �

We then obtain.

Proposition 5.7. Assume that the local approximation spaces Ψj contain the
polynomials of degree λ ≥ k+γ, γ ∈ Z+, and let A b B b O be open subsets. Then
for hν small enough and k + γ ≤ m+ 1, k ≤ m− 1, and λ ≥ l ≥ 1, we have

‖u− uν‖H1(A) ≤ Chl
ν‖u‖Hl+1(B) + Chγ

ν‖u− uν‖H1−k(B),

where the constant C depends on the structural constants and the distance from ∂A
to ∂B, but not on ν.

Proof. Assume first that u ∈ H1(O) and let us replace m with k+γ−1 in Theorem
3.12, which is possible since k+γ ≤ m+1 and we can always decrease m in Theorem
3.12. The use Theorem 3.12 for A b B1 ⊂ B, for some admissible open subset B1

such that B′
1 ⊂ B. The result then follows from Proposition 5.6 and from

inf
χ∈S

‖u− χ‖H1(B1) ≤ Chl‖u‖Hl+1(B′
1)
≤ Chl‖u‖Hl+1(B).

In general, for u ∈ H1−k(O), the result follows by continuity, using Corollary 5.4
and Equation (3). �

We keep all our previous assumptions, the most important of which were recalled
before Proposition 5.6. In particular, the assumptions of Subsection 2.3 remain
valid. Also, recall that the local approximation spaces Ψj are assumed to contain
the polynomials of degree λ. By taking l = γ and using again Equation (3), we
obtain the following error estimate for the GFEM–approximation uν .



DISTRIBUTIONS 29

Theorem 5.8. Let u ∈ H1−k(O) be a weak solution of the Neumann problem
∆u = 0, ∂νu = g ∈ H−1/2−k(∂O) and uν ∈ Sν be its GFEM–approximation, where
the sequence Sν satisfies the assumptions of Subsection 2.3 with k ≤ min{λ,m−1}.
Also, let A0 b O be an open subset of the smooth, bounded domain O. Then for hν

small enough.

‖u− uν‖H1(A0) ≤ Chγ
ν‖u‖H1−k(O), γ = min{λ,m+ 1} − k.

The constant C above depends only the structural constants and the distance from
∂A0 to ∂O, but not on ν.

Remark 5.9. The constant C > 0 above may depend on γ and on the structural
constants A, Cj , κ, σ, λ, and m, as well as on A0 and O.

In particular, since ‖u‖H1−k(O) ≤ C‖g‖H−1/2−k(∂O), by Theorem 4.10, we obtain
the following corollary.

Corollary 5.10. Under the assumptions of Theorem 5.8, we have

‖u− uν‖H1(A0) ≤ Chγ
ν‖g‖H−1/2−k(∂O),

with C > 0 independent of ν and hν small enough.

Remark 5.11. The condition that hν be small enough is not an essential restric-
tion. Indeed, by increasing the constants C in the above results, we can drop the
requirement that hν be small enough.

6. Polynomial local approximation spaces

In this section we shall verify that the Conditions A–D are verified if we choose
Ψj = Qm, to be the space of polynomials of degree ≤ m, 1 ≤ m, and the boundary
of Ω is piecewise smooth, for a suitable covering and subordinated partition of unity.
Some results in this section are either elementary or well known. We include them
nevertheless for the benefit of the reader and for completeness.

For any ball B of radius r, we shall denote by tB the ball with the same center
as B and radius tr.

Lemma 6.1. There exists a constant C > 0, depending only on n, m, and M ,
such that for any ball B ⊂ Rn, for any Q ∈ Qm, and for any t ∈ (0,M ], we have
‖Q‖L2(tB) ≤ C‖Q‖L2(B).

Proof. For any fixed B, Q 7→ ‖Q‖L2(tB) and Q 7→ ‖Q‖L2(B) are two norms on
the finite dimensional space Qm of polynomials of degree ≤ m, and hence they are
equivalent. This gives the result, except the independence of C on B and t. But
all balls are affine equivalent and the L2-norm is scaled by the (square root of the)
determinant of the matrix of the affine transformation. Thus the constant C can
be chosen to be the same for all balls B. �

This gives immediately the following corollary.

Corollary 6.2. There exists a constant C > 0, depending only on n, m, and M
such that for any ball B ⊂ Rn, for any polynomial Q ∈ Qm, and for any t ∈ (0,M ],
we have |Q|Hl(tB) ≤ C|Q|Hl(B) and ‖Q‖Hl(tB) ≤ C‖Q‖Hl(B), 0 ≤ l ≤ m.

Proof. Use Lemma 6.1 for all derivatives Q(α), where |α| ≤ l. �

We now establish to the following “inverse property.”
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Lemma 6.3. There exists a constant C > 0, depending only on n, m, and α, such
that ‖Q(α)‖L2(B) ≤ Crl−|α|‖Q‖Hl(B) for any l ≤ |α| ≤ m, any Q ∈ Qm, and any
ball B of radius r.

Proof. Let us prove first the result for l = 0. That is, we need to prove that
‖Q(α)‖L2(B) ≤ Cr−|α|‖Q‖L2(B).

Let B1 = B1(0) be the unit ball centered at 0. Then Q 7→ ‖Q(α)‖L2(B1) is a
semi-norm on Qm, the space of polynomials of degree at most m, and hence it is
bounded by the norm Q 7→ ‖Q‖L2(B1). Thus ‖Q(α)‖L2(B1) ≤ C1‖Q‖L2(B1). Let L
be an affine transformation mapping B1 onto the ball B of radius r consisting of
the composition of a translation and a dilation of ratio r (so det(L) = rn). Then

‖Q(α)‖L2(B) = det(L)1/2‖Q(α) ◦ L‖L2(B1) = det(L)1/2r−|α|‖(Q ◦ L)(α)‖L2(B1)

≤ C1 det(L)1/2r−|α|‖Q ◦ L‖L2(B1) = Cr−|α|‖Q‖L2(B),

for any Q ∈ Qm.
Assume now that |α| ≥ l > 0. Choose β ≤ α, |β| = l. Then

‖Dα−βDβQ‖L2(B) ≤ Cr−|α−β|‖DβQ‖L2(B) ≤ Crl−|α|‖Q‖Hl(B).

This completes the proof. �

The relevant “inverse property,” implying also Condition C, now follows.

Proposition 6.4. There exists a constant C > 0, depending only on n, m, α, and
σ, such that ‖Q(α)‖L2(Ω) ≤ Crl−|α|‖Q‖Hl(B) for any l ≤ |α| ≤ m, any Q ∈ Qm,
any ball B of radius r, and any set Ω contained in σ−1B and star-shaped with
respect to B.

Proof. This follows from Corollary 6.2 and Lemma 6.3. �

We now prove the following elementary lemma.

Lemma 6.5. Assume the data defining S is fixed. Then for any k ∈ Z+ and any
open sets A0 b Ak ⊂ Ω, we can construct admissible open sets B1, . . . , Bk−1 such
that A0 =: B0 b B1 b B2 b . . . b Bk−1 b Bk := Ak and Ĉdist(∂Bj , ∂Bj−1) ≥
θ/k, where θ := dist(∂A0, ∂Ak), provided that Ĉh < θ, where Ĉ depends on k and
n only (in particular, Ĉ is independent of h).

Proof. Take k = 2, for simplicity. The general result is proved similarly or by
iterating this case. Let Ĉ = 4. Let U be the union of all open sets ωj at distance
at most θ/4 from A0. Let J be the set of indices j such that φj 6= 0 on U and let
G be the set where

∑
j∈J φj = 1. We then define B1 to be the interior of G. �

6.1. Partition of Unity. We show in this subsection that, for a piecewise C1 do-
main Ω, we can choose a sequence Σν = {ων

j , φ
ν
j ,Ψ

ν
j , ω

∗ν
j }Nν

j=1, ν ∈ Z+, of GFEM–
data, ∪jω

ν
j = Ω, satisfying the assumptions of Subsection 2.3. Other examples of

sequences Σν , possibly better suited for numerical implementation, will be included
in the forthcoming paper [7], where we will also discuss the numerical implementa-
tion of the GFEM for boundary value problems with distributional data.

Theorem 6.6. Let Ω ⊂ Rn be a bounded open subset with piecewise C1-boundary
and all angles > 0. Then there exist structural constants A, Cj, σ, κ, λ, and m
such that, for any small enough h > 0, we can construct a partition of unity {φj}
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subordinated to the covering {ωj} and satisfying all the assumptions of subsection
(2.3), in particular, satisfying conditions A(h), B, C, and D.

Proof. Let us first triangulate Ω with (possibly curvilinear) triangles Tj with di-
ameters ≤ h/2 and ≥ C1h and satisfying the angle condition. (Recall that this
means that there exists an angle θ > 0 such that all angles of the triangles are ≥ θ,
with θ independent of h.) Only the sides on the boundary of Ω are allowed to be
curvilinear. The interior sides are required to be straight segments. This is possible
since Ω has a piecewise C1 boundary and all angles are > 0.

We can then chose σ > 0 small enough and independent of h such that each
triangle will contain a ball of radius ≥ 2σh. Let xj be the centers of these balls
and let ω∗j be the ball with radius σh and center xj . Then let ωj = B(xj , h) ∩ Ω,
where B(x, r) denotes the open ball with center x and radius r. Our construction
shows that the balls 2ω∗j = B(xj , 2σh) are disjoint.

Then Ω = ∪N
j=1ωj . Let φ̃j(x) = η(|x−xj |/h), where η is a fixed, smooth function

η : [0,∞) → [0, 1] such that η(t) = 1 for t ≤ 1/2 and η(t) = 0 for t ≥ 1. Then
‖∂αφj‖L∞(Ω) ≤ Ck/(diamωj)k, for k = |α| ≤ m, and any j = 1, . . . , N . Moreover,
φ̃j = 1 on ωj and hence ∑

φ̃j ≥ 1.

Let now ψj(x) = η(|x − xj |/(σh)), so that ψj has support in 2ω∗j and is equal
to 1 on ω∗j . Define ψ̂j = 1 − ψj and let ψ =

∏N
j=1 ψj . Then ψ = 0 on ∪ω∗j

and ‖∂αφj‖L∞(Ω) ≤ Ck/(diamωj)k, for k = |α| ≤ m, and any j = 1, . . . , N . Let
φ̂j := ψφ̃j + ψj . An easy verification shows that we still have

∑
j φ̂j ≥ 1, because

(i) the balls 2ω∗j are disjoint;
(ii) φ̂j = φ̃j outside ∪2ω∗j ,
(iii) φ̂j = 1 on 2ω∗j , and
(iv) φ̂j ≥ 0 everywhere.

Finally, we consider the Shephard functions

φj :=
( ∑

k

φ̂k

)−1

φ̂j .

Our construction shows that φj is a (κ,C0, C1, . . . , Cm) partition of unity. More-
over, φj = 1 on ω∗j , because φk(x) = δkj for x ∈ ω∗j (recall that δkj = 1 if k = j
and δkj = 0 otherwise). �

Some assumptions on the domain Ω in the above theorem are necessary, as shown
by the following remark.

Remark 6.7. The non-Lipschitz domain

Ωc := {(x, y),−x2 ≤ y ≤ x2, x2 + y2 ≤ 1, x ≥ 0}
will have no covering {ωj} satisfying the Condition A.
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